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Installation
You can install the development version of AwesomePackage from GitHub
with:

# install.packages("devtools")

devtools::install_github("JONATHONCHOW/AwesomePackage")
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https://github.com/


Hello world
You can use the following code to see if AwesomePackage has been
successfully installed.

library(AwesomePackage)

hello_world()

## [1] "Data science is fantastic!"

You can check out theories and examples at Articles in AwesomePackage.

You can refer to Reference in AwesomePackage for the use of functions, and
then you can have fun with ancestry inference!
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Data
The package data: data_TGP, data_HGDP, map_TGP, map_HGDP.
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Fit PSD model
We consider the sample data from the 1000 Genomes Project (TGP) and use a
PSD model to fit these data. We import the pre-trained results directly.

load("result//result_fit_psd.RData")
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EM algorithm
We fit the PSD model with EM algorithm, and use the loss function as a
stopping criterion. EM algorithm converges slowly. It takes about 450 EM
iterations to reach the predetermined accuracy.

result_TGP_em <- psd_fit_em(data_TGP, 3, 1e-5, 500)

7 / 32



We plot the loss function against the number of iterations using package
ggplot2, the loss function records once for 10 iterations.

L <- result_TGP_em$Loss

plot_loss(list(L), "em", 10)
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We plot the ancestral proportions of individuals using package ggplot2. The
fitting result of EM algorithm is not very accurate.

P <- result_TGP_em$P

plot_structure(P)
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We measure the prediction accuracy of the dataset by the maximum
likelihood function and the deviance residuals.

L[length(L)]

## [1] -0.5971432

psd_error(data_TGP, result_TGP_em)

## [1] 0.3374755
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SQP algorithm
We fit the PSD model with SQP algorithm, and use the loss function as a
stopping criterion. Although SQP algorithm converges fast, it is easy to
converge to the local optimal value. To prevent this bad scenario, we start
with 100 EM iterations, and then only need about 40 SQP iterations to reach
the accuracy requirement.

result_TGP_sqp <- psd_fit_sqp(data_TGP, 3, 1e-5, 50, 100)
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We plot the loss function against the number of iterations using package
ggplot2, the loss function records once for 10 iterations.

L <- result_TGP_sqp$Loss

plot_loss(list(L), "em & sqp", 10)
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We plot the ancestral proportions of individuals using package ggplot2. Notice
that the fitting result of the SQP algorithm is excellent.

P <- result_TGP_sqp$P

plot_structure(P)
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We measure the prediction accuracy of the dataset by the maximum
likelihood function and the deviance residuals.

L[length(L)]

## [1] -0.5969287

psd_error(data_TGP, result_TGP_sqp)

## [1] 0.3372611
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VI algorithm
We fit the PSD model with VI algorithm, and use the loss function as a
stopping criterion. Similar to EM algorithm, the convergence of VI algorithm is
also relatively slow, and about 490 iterations are needed to reach the accuracy
requirement.

result_TGP_vi <- psd_fit_vi(data_TGP, 3, 1e-5, 500)
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We plot the loss function against the number of iterations using package
ggplot2, the loss function records once for 10 iterations.

L <- result_TGP_vi$Loss

plot_loss(list(L), "vi", 10)
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We plot the ancestral proportions of individuals using package ggplot2. The
fitting result is much better than EM algorithm.

P <- result_TGP_vi$P

plot_structure(P)

17 / 32



We measure the prediction accuracy of the dataset by the evidence of lower
bound (ELBO), the maximum likelihood function and the deviance residuals.

L[length(L)]

## [1] -0.6103088

psd_loglikelihood(data_TGP, result_TGP_vi)

## [1] -0.59751

psd_error(data_TGP, result_TGP_vi)

## [1] 0.3378423
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SVI algorithm
We fit the PSD model with SVI algorithm, and use the loss function as a
stopping criterion. We completed the fitting in 13 min, little longer than the
previous three algorithms. Although SVI algorithm is known for its fast speed,
this is for the dataset with a large number of individuals. It can be predicted
that for the complete TGP data, SVI algorithm still needs about the same time,
but the time of other algorithms will be greatly increased.

result_TGP_svi <- psd_fit_svi(data_TGP, 3,

1e-5, 5e+5, 1e+4, 3,

100, 2000,

5e-2, 1e-1,

1, 0.5)
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We plot the loss function against the number of iterations using package
ggplot2, the loss function records once for 10,000 iterations.

L <- result_TGP_svi$Loss

plot_loss(list(L), "svi", 1e+4)
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We plot the ancestral proportions of individuals using package ggplot2. The
convergence accuracy of SVI algorithm is also very good.

P <- result_TGP_svi$P

plot_structure(P)
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We measure the prediction accuracy of the dataset by the maximum
likelihood function of the validation set.

result_TGP_svi$MaxLoss

## [1] -0.614379
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Structure plot
We analyze the structure diagrams of the above four algorithms for TGP and
HGDP. We import the pre-trained results directly.

load("result//result_structure_plot.RData")
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TGP
result_TGP <- psd_fit_vi(data_TGP, 4, 1e-5, 2000)

P <- result_TGP$P

label <- rownames(data_TGP)

lpop <- unlist(map_TGP[1])

spop <- unlist(map_TGP[2])

indiv <- unlist(map_TGP[3])
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Large populations.

plot_structure(P, 

               label = label, 

               map.indiv = indiv, 

               map.pop = lpop, 

               gap = 5)
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Small populations.

plot_structure(P, 

               label = label, 

               map.indiv = indiv, 

               map.pop = spop, 

               gap = 5)
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HGDP
result_HGDP <- psd_fit_vi(data_HGDP, 7, 1e-5, 2000)

P <- result_HGDP$P

label <- rownames(data_HGDP)

lpop <- unlist(map_HGDP[1])

spop <- unlist(map_HGDP[2])

indiv <- unlist(map_HGDP[3])
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Large populations.

plot_structure(P, 

               label = label, 

               map.indiv = indiv, 

               map.pop = lpop, 

               gap = 5)
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Small populations.

plot_structure(P,

               label = label, 

               map.indiv = indiv, 

               map.pop = spop, 

               gap = 3, 

               font.size = 5)
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Choose hyper-parameter K
We fit different hyperparameters K respectively, and select the K that makes
some indices optimal. We conduct experiments on TPG and HGDP datasets
and different algorithms separately. See Articles in AwesomePackage for
details.
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Conclusion
"I have to work very hard, very hard, in order to do a little
success."

--- Stephen Chow
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